Unflattened (FFF) Photon Beams

Todd Pawlicki, Ph.D.
Professor & Vice-Chair
Director, Division of Medical Physics

UC San Diego
Radiation Oncology
Objectives

• Review linear accelerator components of FFF
• Understand dosimetry of FFF beams
• Describe issues of FFF beam commissioning
Review of Linac System

- Standing Wave Accelerator
- Energy Switch
- Beam Steering
- Triode Electron Gun
- Solenoid
- Bending Magnet
- Klystron and RF Driver (not shown)
- Ion Chamber
- MLC
Beam Steering

Bending Magnet

Solenoid
Varian Truebeam

- Primary collimator also moves in and out with the photon targets.
- Chamber axis is shared with the field light.
Field light mirror

Mounted on field flattener platter
Effect of high dose per pulse flattening filter-free beams on cancer cell survival

Ines Lohse*, Stephanie Lang*, Jan Hrbacek*, Stephan Scheidegger‡, Stephan Bodis§, Nadia S. Macedo¶, Jianhua Feng‖, Urs M. Lüttolf‡, Kathrin Zaugg***

*Department of Radiation Oncology, University Hospital Zürich, Switzerland; ‡Institute of Radiation Oncology, Kantonsspital Aarau, Switzerland; ¶Centre of Applied Mathematics and Physics, Zurich University of Applied Sciences, Switzerland

Dose rate:

20 cGy/min

400 cGy/min

2400 cGy/min

FFF

400 cGy/min

FFF
Dose Monitoring System
w/ Filter

Target
- **Flattening Filter**
 - **Direct photons**
 - **Extra-focal photons**

Patient
- **Photon Energy**
 - **Charged Particles**
 - **Scatter Photons**
 - **Charged Particles**
- **Primary Dose**
 - **Charged Particles**
 - **Scatter Photons**
 - **Charged Particles**

Charged Particle Dose (contaminant)
- **Charged Particles**
- **Extra-focal photon energy**

Head Scatter Dose
- **Charged Particles**
- **Scatter Photons**
- **Charged Particles**

Phantom Scatter Dose (from direct beam)
- **Charged Particles**
- **Scatter Photons**
- **Charged Particles**

Phantom Scatter Dose (from extra-focal beam)
- **Charged Particles**
- **Scatter Photons**
- **Charged Particles**
FFF

Patient

Primary Dose

Charged Particles

Photon Energy

Phantom Scatter Dose (from direct beam)

Direct photons

Target

Scatter Photons

Charged Particles
FFF vs. w/Filter

6X PDD vs. 6F PDD

Hrbacek et al. IJROBP, 2011.

6X: PDD(5,10x10) = 85.9
6F: PDD(5,10x10) = 84.3

Table 1. Depth dose curve parameters (2 standard deviations in brackets)

<table>
<thead>
<tr>
<th></th>
<th>d_{max} (mm)</th>
<th>$%dd$ (0.025 mm)</th>
<th>$%dd$ (1 mm)</th>
<th>$%dd$ (100 mm)</th>
<th>TPR 20/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>X6</td>
<td>14.3 (0.44)</td>
<td>18.9 (0.4)</td>
<td>47.3 (0.4)</td>
<td>66.0 (0.4)</td>
<td>0.667 (0.004)</td>
</tr>
<tr>
<td>X6FFF</td>
<td>12.1 (0.17)</td>
<td>24.3 (0.4)</td>
<td>56.1 (0.4)</td>
<td>63.2 (0.2)</td>
<td>0.631 (0.004)</td>
</tr>
<tr>
<td>X10</td>
<td>22.3 (0.60)</td>
<td>14.0 (1.0)</td>
<td>32.3 (1.0)</td>
<td>73.5 (0.5)</td>
<td>0.738 (0.004)</td>
</tr>
<tr>
<td>X10FFF</td>
<td>21.0 (1.2)</td>
<td>19.1 (1.6)</td>
<td>43.6 (1.0)</td>
<td>69.1 (1.0)</td>
<td>0.692 (0.012)</td>
</tr>
</tbody>
</table>

Abbreviations: TPR 20/10 = tissue-phantom ratio at the depths of 20 and 10 cm; $\%dd$ = percentage depth dose.
$6X \ d_{\text{max}} \ \text{vs.} \ 6F \ d_{\text{max}}$

Surface Dose Investigation of the Flattening Filter-Free Photon Beams

Yuenan Wang, Ph.D.,* Mohammad K. Khan, M.D., Ph.D., † Joseph Y. Ting, Ph.D.,*, and Stephen B. Easterling, M.S. *

*Melbourne Cancer Center, Melbourne, Fl; and †Radiation Oncology, Winship Cancer Center, Emory University, Atlanta, GA
Output: 6X vs. 6F

Table 4. Dosimetric leaf gap and transmission of HDMLC
(2 standard deviations in brackets)

<table>
<thead>
<tr>
<th>MLC transmission</th>
<th>DLG (mm)</th>
<th>depth 5 cm</th>
<th>depth 10 cm</th>
<th>depth 20 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>X6</td>
<td>0.93 (+/−0.08)</td>
<td>1.19 %</td>
<td>1.21 %</td>
<td>1.30 %</td>
</tr>
<tr>
<td>X10</td>
<td>1.03 (+/−0.08)</td>
<td>1.38 %</td>
<td>1.39 %</td>
<td>1.41 %</td>
</tr>
<tr>
<td>X6FFF</td>
<td>0.91 (+/−0.07)</td>
<td>0.98 %</td>
<td>1.02 %</td>
<td>1.13 %</td>
</tr>
<tr>
<td>X10FFF</td>
<td>1.04 (+/−0.08)</td>
<td>1.17 %</td>
<td>1.20 %</td>
<td>1.27 %</td>
</tr>
</tbody>
</table>
Output factors

• Careful measuring output factors
• Need to look for the center spot of field
6X Profile vs. 6F Profile

Graph:
- **Y-axis:** Relative Dose (%)
- **X-axis:** Offaxis Distance (mm)
- **Legend:**
 - Red: 6F_10X10_Profile @Dmax
 - Blue: 6X_10X10_Profile @Dmax

Note:
This graph compares the dose profiles of 6X and 6F beams at the reference point Dmax.
4 x 4 Profiles

Depth = 5 cm
40 x 40 Profiles

Depth = 10 cm
Diagonal Profiles

Truebeam Diagonal Profile

“C” Series Diagonal Profile
Dose to Air and Dose to Water

- Conversion of the air cavity dose D_{air} to dose to medium D_{med} is based on:
 - Bragg-Gray cavity theory
 - Average *unrestricted* mass collision stopping power
 \[
 D_{med} = D_{air} \left(\frac{\bar{S}}{\rho} \right)_{med} \left/ \left(\frac{\bar{S}}{\rho} \right)_{air} \right.
 \]
 - Spencer-Attix cavity
 - Average *restricted* mass collision stopping power
Beam Quality

Relationship between \(\%dd(10)_x \) and stopping-power ratios for flattening filter free accelerators: A Monte Carlo study

Guoming Xionga) and D. W. O. Rogers

\textit{Physics Department, Carleton University, Ottawa, Ontario, K1S 5B6 Canada}

\textbf{Med. Phys. 35 (5), May 2008}

- Different ways to determine \((\bar{L}/\rho)_{\text{water}} \)
- \(\%dd(10)_x \)
 - Results in 0.4\% error in TG-51 protocol
- \(TPR^{20}_{10} \)
 - Different relationships can result in 0.4-1.0\% error

\(\rho_{\text{water}} \) air

\(\bar{L} \)
Ion Recombination

• Three categories
 – Continuous beams
 – Scanning beams
 – Pulsed beams (i.e., conventional linacs and FFF mode)

• For operating voltage $V_H = 2V_L$

$$f_{g,pul} = 2 - \frac{M_H}{M_L}$$

M is the chamber signal for high and low voltage.
FFF Beam Calibration

• Protocols for output calibration still apply
• Still need to check correction factors for FFF
 – Ion recombination correction ~ 0.5% for 6FFF
 – Polarity correction ~ 1.0

• Eclipse data is same as for flattened beams

Implementation: End-to-End

• Small water tank measurements
• Scan, Plan, and Deliver
 – Phantoms
 • Solid water phantom
 • Homogeneous CIRS phantom
 • Heterogeneous CIRS phantom
 – Evaluation
 • Point dose comparison
 • 2D dose comparison
 • Independent MU calculation
Heterogeneous Phantom Tests

Geometry 11
- Farmer ion chamber & EBT2 Film
- Energies = 6XGB, 6XUCSD, 6FFF
- Plans
 - Cylindrical PTV
 - 4 Field Box (+ EDWs)
 - 7 Field IMRT
 - 2 Arc RapidArc
 - C-Shape PTV
 - 7 Field IMRT
CIRS Heterogeneous Phantom
CIRS Heterogeneous Phantom

<table>
<thead>
<tr>
<th>Plan</th>
<th>Mode</th>
<th>Meas Dose (cGy)</th>
<th>Plan Dose (cGy)</th>
<th>% diff</th>
<th>% points passing 3%/3mm Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-f IMRT C-shape PTV</td>
<td>6XGB</td>
<td>197.8</td>
<td>200.5</td>
<td>-1.3%</td>
<td>98.1</td>
</tr>
<tr>
<td></td>
<td>6XUCSD</td>
<td>198.4</td>
<td>200.8</td>
<td>-1.2%</td>
<td>98.9</td>
</tr>
<tr>
<td></td>
<td>6X-FFF</td>
<td>201.4</td>
<td>204.1</td>
<td>-1.3%</td>
<td>99.3</td>
</tr>
<tr>
<td>RapidArc</td>
<td>6XGB</td>
<td>197.3</td>
<td>201.4</td>
<td>-2.1%</td>
<td>99.3</td>
</tr>
<tr>
<td></td>
<td>6XUCSD</td>
<td>197.0</td>
<td>201.2</td>
<td>-2.1%</td>
<td>98.9</td>
</tr>
<tr>
<td></td>
<td>6X-FFF</td>
<td>193.5</td>
<td>197.6</td>
<td>-2.1%</td>
<td>99.7</td>
</tr>
</tbody>
</table>
Patient-Specific QA (UCSD)

• Starting Out and for all FFF plans
 – Point dose and planar dosimetry
 • IMRT phantom
 • EBT2 film and analysis using RIT

• Conventional IMRT – Portal dosimetry
Point Dose and Planar Dosimetry
Patient-Specific QA Summary

Pretreatment quality assurance of flattening filter free beams on 224 patients for intensity modulated plans: A multicentric study

Stephanie Lang
Department of Radiation Oncology, 8091 Zurich, Switzerland

Giacomo Reggiori
Department of Radiation Oncology, IRCCS Istituto Clinico Humanitas, 20089 Rozzano, Italy

Josep Puxeu Vaqué
Medical Physics Unit, Institut Català d’Oncologia ICO, 08907 Barcellona, Spain

Carlos Calle
Department of Radiation Oncology, Kantonsspital 8401 Winterthur, Switzerland

Jan Hrbacek and Stephan Klöck
Department of Radiation Oncology, 8091 Zurich, Switzerland

Marta Scorsetti
Department of Radiation Oncology, IRCCS Istituto Clinico Humanitas, 20089 Rozzano, Italy

Luca Cozzi
Medical Physics Unit, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland

Pietro Mancosu(a)
Department of Radiation Oncology, IRCCS Istituto Clinico Humanitas, 20089 Rozzano, Italy

• 224 patients with 1–6 lesions in various anatomical regions
• Point dose verification was performed on 52 cases, obtaining a dose deviation of 0.34%
AAPM Task Group 103 report on peer review in clinical radiation oncology physics

RESULTS OF TLD CHECK OF PHOTON BEAM OUTPUT

<table>
<thead>
<tr>
<th>Institution:</th>
<th>Moores UCSD Cancer Center, La Jolla, CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTF Number</td>
<td>3105</td>
</tr>
<tr>
<td>Person irradiating dosimeters:</td>
<td>Todd Pawlicki, Ph.D.</td>
</tr>
<tr>
<td>Radiation Machine:</td>
<td>TrueBeam Serial 18 (DelMarTB)</td>
</tr>
<tr>
<td>Radiation Quality:</td>
<td>6 (FF) MV X-rays</td>
</tr>
<tr>
<td>Distance from source to reference point:</td>
<td>100.0 cm</td>
</tr>
</tbody>
</table>
Brain SRS

15Gy x 1
6FFF
Brain SRS

18Gy x 1
6FFF
Spine SRS

18Gy x 1
6FFF
3 min/arc
(2 arcs)
Planning – 6X vs. 6FFF

- 6F; 1295 MU
- 6X; 1204 MU
- 7.6% less MU

Showed a decrease in MU for FFF beams.
Planning – 6X vs. 6FFF

- 6FFF; 3729 MU + 3846 MU = 7575 MU
- 6X; 3354 MU + 3460 MU = 6814 MU
 - 11.2% less MU
Summary

• FFF Beams require careful implementation

• Follow existing protocols

• Start out planning both flat and FFF beams
 – Establish a patient-specific QA program

• Use external audits to check implementation